Project Icarus

Final Report

Kevin Godby, Jesse Lane, and Ethan Slattery
April 27, 2006

Human—-Computer Interaction Program
Iowa State University

Ames, Jowa

Contents

1 Introduction

2 User Input

3 Computational Perception
4 Flight Kinematics

5 Graphics

6 Conclusion

12

1 Introduction

Since the beginning of time humans have watched birds soar through the air
and have dreamed of doing the same. However, the laws of physics have con-
spired to make that dream difficult, if not impossible, for a single human under
his or her own power. Fortunately, we are not constrained by physical law in
virtual worlds so we can come close to fulfilling this dream for many. Our pri-
mary objective for this project is to allow a person to navigate a virtual world
as if they are flying by flapping their arms like wings. A secondary objective
for this project is to minimize the equipment the user must interacts with in
order to experience self-powered flight. Ideally the user will enter a virtual
reality CAVE, start the program and fly. There are some technological hurdles
that may keep us from this ideal but we are sure we can come very close.

There are many possible benefits to this project—the most obvious being
the “cool factor.” Another is the incorporation of physical activity into a tra-
ditionally passive activity like playing video games, in fact, many who have
flown have commented on how tiring it is. Also, this project has allowed us to
hone the skills learned in HCI 575x.

Figure 1: Icarus and Daedelus

2 User Input

The user input for Project Icarus consists of three groups of twenty infrared-
emitting LEDs. Each group of LEDs is strategically placed on the user to de-

termine arm position. To do this, a group is placed on each wrist and one in

between the shoulders on the back. This placement ensures that we can accu-
rately capture all the user movements that are needed to turn, glide, fall, and
flap.

The actual tracking devices are constructed of two pieces of Velcro stuck
back-to-back. This ensures that the user can easily don and remove them with-
out damaging the circuit (see figure 2) inside. In order to wrap the tracking de-
vice around an individual’s wrist, stranded wire is soldered in between each
LED. This dramatically increases the flexibility of the circuit and reduces the
chance of having to re-solder any joint. This is especially important since the
circuit is sandwiched between two pieces of Velcro that are stuck together with
adhesive.

15 Ohm 15 Ohm

15 Ohm

L+

_'|' Sv Battery

Figure 2: LED Circuit

In order to capture the movement of the user, a common web camera (that
does not filter out infrared light) is placed on a tripod or other stable device
behind the user. To ease in user tracking and block out all unwanted visible
light, a small piece of infrared pass filter material is placed between the camera
sensor and the lens. The result is a black image except for anything from an
infrared source. This means that any indoor lighting or images from projectors
will not show up. This is important so that only the LED tracking devices are
seen from the camera. The camera is then put slightly out of focus to blur the
LEDs in each group together to form one blob. The three light blobs are then
used to calculate arm position (see section 3).

Originally, no intrusive device was to be used for interaction: the idea was
to illuminate a person with an external infrared light source. Unfortunately,
the size of source needed to illuminate an entire individual in a CAVE environ-
ment is quite large and, ultimately, too expensive for the scope of this partic-
ular project. If more funding becomes available, this option will be taken into
greater consideration.

The light emitting circuit shown in figure 2 requires 9 volts and approxi-

mately 400 mA to operate. Each light source includes a connection for a stan-
dard 9 v battery to satisfy the power needs. A standard, rechargeable 9 v NiMH
battery has about 150 mAh of capacity but can go up to around 625 mAh for Al-
kaline. To keep cost down, we try to use the rechargeable type whenever pos-
sible. Using rechargeable batteries, however, leads to less usable time (about
22 minutes), and the batteries need to be changed more often.

T Forward Angle

Figure 3: Top view of input setup showing wrists too far forward

40 Degrees

LED

Figure 4: LED emission

One issue that was not foreseen is the angles in which the user needs to
hold his or her arms. If the user’s wrist is far out of perpendicular to the cam-
era from a top view (see figure 3), the light can disappear from the camera’s
view. This is due to a property of the LEDs and also the way in which they are
mounted. The LEDs’ emitted light is only visible when viewed from less then
approximately 20 degrees off vertical (see figure 4). The result of this limitation
is that when the user’s arms come forward (away from camera) the LEDs on
the wrist are more likely to be out of this range and the stationary camera is
unable to detect the light. Since the LEDs are mounted around the wrist, the

local wrist rotation is not as much of an issue as when the user brings his or
her wrists forward. This is a limitation in the LEDs, so the only solution would
be adding LEDs facing in other directions. Adding LEDs would decrease the
already short lifespan of the battery, thus, sufficient instruction is given to the

user to keep the lights relatively perpendicular to the camera.

3 Computational Perception

Since our original idea of using gesture recognition on an IR-illuminated per-
son failed, we shifted to the method outlined above. This greatly simplified the
computational techniques we had to employ. The filtered image (see figure 5)
is surprisingly clean when we receive it from the camera, so we didn’t need to

modify it much.

Figure 5: This IR-filtered frame from camera shows Ethan flapping his arms
while in the C4 CAVE. The two small white spots at the top of the image are
the IR LEDs from the CAVE'’s tracking system. The three larger blogs are the
IR LEDs strapped to Ethan’s wrists and back.

[02147] L: 0.090 R: 0.090

Figure 6: The processed image highlights the left blob in red, the center blob in
yellow, and the right blob in green. The yellow lines show the vertical distance
between the blobs. The digits along the bottom of the image show the frame
counter and the left and right vertical distances.

First, the image is converted from the RGB color space to greyscale. Next,
the image is opened by a six-pixel diameter disc-shaped structuring element.
The resulting image is dilated twice with a 3 x 3 block-shaped structuring ele-
ment.

Next, the blobs are extracted from the image. If the number of blobs is not
equal to three, the image is thrown out and we start again with the next frame
from the camera. If three blobs are found, they are sorted by the x position of
their centroids, from left to right. Finally, the vertical distances between the
left and center blobs (Y;) and right and center blobs (Y;) are calculated (see
figure 6). These values are sent via TCP socket to the simulator.

4 Flight Kinematics

An important part of Project Icarus is turning the arm position information
from the camera into virtual flight. During the development of Project Icarus
we experimented with two different flight models. Our first attempt was a
force-based flight model. In the end, we settled upon a velocity-based ap-
proach that is not as realistic, but provides for a less frustrating experience.
We used OPAL (Open Physics Abstraction Layer) as our physics engine. OPAL
provides powerful features for simulating the application of forces and torques
to a rigid body.

All of the interacting elements in the simulation (the ground plane, boxes,
and user bounding box) are represented by rectangular solids. Each solid has
a number of properties that can be set such as density, size, center of gravity,
and material. We used boxes that had a high density and materials that have no
friction coefficient. The reason for not using friction is that the user would have
a tendency to tumble violently when contacting another solid. Implementing
a method for righting the user after tumbling would be useful, however, we
did not have time to do this and we do not think that the user experience will
suffer greatly.

Our first, force-based model was very simplistic and ad hoc. We used three
forces applied to the user solid to achieve flight. These forces are all dependent
on the normalized arm position. The most important force for flight is what we
have termed the buoyant force. The buoyant force must increase when the arms
are extended, but not exceed the force of gravity to simulate soaring. Also,
the buoyant force must be greater than the force of gravity when the arms
are flapping to simulate powered flight. Therefore, the buoyant force must be
proportional to the absolute value of the arm position and the derivative of the
arm position. Another force that is important for the experience of flight is a
force that supplies a forward motion. Not surprisingly, we chose to call this
force the forward force. In our case the forward force is constant unless the user
solid is in direct contact with another solid, in which case, the forward force
is zero. Finally, in order to have controlled flight one must be able to turn.
We calculated a turning torque that operated about the vertical axis and was
proportional to the difference between the arm position from each arm.

The force-based approach worked moderately well. Unfortunately it suf-
fered from at least two problems that made control—and therefore the user
experience—frustrating. The first problem is that with a force-based approach

it takes work to overcome an opposing force. For instance, gravity is always
pulling down on the user and it takes some flapping to overcome gravity and
gain an upward velocity. No surprise there. However, the inverse is also true.
If we are applying an upward force by flapping our arms, then it takes time for
gravity to overcome our upward velocity and make us fall. The other problem
is that the model does not account for any kind of centripetal force. The very
simple combination of forward force and turning torque causes a phenomenon
we have dubbed hovercrafting. When hovercrafting, the user rotates about the
vertical axis to make a turn but the linear momentum of the user continues
to carry them in the same direction of travel until the constant forward force
restores forward flight (see figure 7). The combination of these two problems
made fine control of the user’s position virtually impossible when tested on a
task such as flying between two closely spaced blocks.

Figure 7: Hovercrafting.

Our second, velocity-based model is actually just as simplistic and ad hoc
as the original force-based approach. In fact, we used the same equations and
adjusted velocities directly instead of forces. We replaced the buoyant force
with an upward velocity (figure 8), the forward force with a forward velocity
(figure 9), and the turning torque with an angular velocity (figure 10). After
tweaking the constant coefficients in the equations we were much more satis-
fied with our flight model. When flying through two closely-spaced boxes the
user has much tighter control over their own position. The only artifact that
seems very unrealistic is the upward motion due to flapping. As it is imple-
mented it feels a little too discontinuous. This could probably be improved by
using a simple filter or hysteresis on the upward velocity.

5 Graphics

All the physics simulation in the world would still not make a flight simulator.
In order for the user to become immersed in the experience they must perceive

Figure 8: The upward velocity is proportional to |Y;| + |Y;| + Y; + Y.

Figure 9: The forward velocity is proportional to a constant.

the virtual environment. Of course this is done with computer graphics. Our
original goal in developing Project Icarus was to allow a person to experience
a simulation of human-powered flight in an immersive environment such as
a CAVE or a head-mounted display (HMD). With this in mind we used VR
Juggler as the glue to bind the physics and graphics together into a portable,
immersive application. VR Juggler allows us to, “code once, experience every-
where.” We can use a laptop or desktop computer to debug or fly at home, as
well as use a CAVE or HMD for a truly immersive experience.

As mentioned above, we used OPAL for the physics layer. For the graph-
ics we used OpenSceneGraph (OSG) which is an open source scene-graph li-
brary. A scene-graph greatly simplifies some aspects of graphics programming.
Scene-graphs take advantage of a tree-like structure to abstract concepts such
as grouping and transformation (see figure 11). The graph allows us to group

graphical objects together and perform certain operations to the whole group

10

Figure 10: The angular velocity is proportional to Y; — Y;.

easily such as transforms, materials, switching, and lighting. The graph also
allows us to take advantage of one object in many instances, such as using one
box geometry to represent all boxes. We did not take advantage of many of
these properties of the scene-graph in this work mainly because they were not
required and because it was a good excuse for the authors to become familiar
with this particular scene-graph implementation for another project.

N N
() oy) e
ORONC (=)

Figure 11: Two examples of scene-graphs.

The environment that was created for Project Icarus is very simple. Due

to limitations in the physics engine, the scene-graph library, and the authors’

11

skill, we represented all of the obstacles in the world as simple cubes on top
of a ground plane. Very simple textures were created to give the world a look
similar to the 1980s movie Tron. Each box and the ground plane has a phys-
ical representation as mentioned in preceding paragraphs. Using OPAL gave
us collision detection and collision response for free. Handling collisions is
something that is often done in the graphics.

6 Conclusion

We have a number of ideas for improvements to our project and ideas for future
work. While our system seemed to hold up well in the environments in which
we tested it, it would be useful to have a variable threshold for the infrared
image. This would help reduce the perception of ghost images and reflections
of the infrared light.

We would also like to compile our program to run in the CAVE environ-
ment. While we wrote our software with the CAVE in mind (using VR Juggler),
we haven't yet tested its performance live in the CAVEs.

We demonstrated our project to many of our classmates and were very
pleased by their reactions and by the performance of the system.

12

